Supercomputers in materials science: First-principles simulation of large molecules

Date: 28/03/2015
Matter is composed of large numbers of atoms, and its physical properties are determined by the nature of the complex forces between atoms and electrons.

Theoreticians use quantum mechanics to calculate the forces between atoms and the behaviour of electrons in atoms. Specifically, the so-called first-principles simulation based on quantum mechanics is a powerful technique widely used to elucidate diverse properties of matter and materials on the atomic scale.

However, the size of the systems modelled with conventional first-principles simulations is limited to those of only a few hundred atoms in most cases because the complexity and scale of simulations increases as the number of atoms becomes larger.

Now, a research team led by Tsuyoshi Miyazaki at the NIMS-International Center for Materials Nanoarchitectonics (MANA) and David Bowler, University College London, London Centre for Nanotechnology, has successfully developed a highly efficient, large-scale first-principles simulation method for simulating very large systems containing a 100-fold larger number of atoms compared with conventional methods.

This method provides the means of performing atomic and electron scale simulation of biological molecules and complex matter including nanostructured materials for which conventional methods cannot not be utilized.
The research team has been pursuing the development of a calculation method capable of performing highly efficient large-scale simulations. Here, by introducing a new technique to enable extremely precise numerical calculations and utilizing supercomputers, namely the “K computer” and FX10 installed at RIKEN and the University of Tokyo, respectively, the team successfully performed first-principles simulation of giant systems comprising of more than 30,000 atoms, which is 100-fold larger compared with the conventional methods. Their success will paved the way for simulation of very large systems including up to millions of atoms/electrons.

News Source: MANA, Japan

Author: Srinivasa Reddy N
Header ad