HomeNewsNews Details
News Details
Date: 15-05-13

CEA Leti: Integrating photonic layer with CMOS circuit is ready for mass production

CEA-Leti has announced successful completion of HELIOS program, for integrating a photonic layer with a CMOS circuit, using microelectronics fabrication processes. With this achievement CEA-Leti says Europe is in a position to make volume production of silicon photonics semiconductor devices.

“It is strategically important for Europe to maintain photonic chip-design and chip-integrating functions to compete with other countries and to encourage innovation by European microelectronics companies,” said Leti CEO Laurent Malier. “HELIOS’s success in creating the essential building blocks for integrating photonics with CMOS circuits and making the process available to a variety of users underscores the key role that broad European technological cooperation plays in a very competitive global business environment.”

Thomas Skordas, head of the EC’s photonics unit, said HELIOS has shown the large potential silicon photonics has in many different applications, such as data communications.

“The technology roadmap of silicon photonics becomes clearer now. Europe will have to move fast to become competitive in this new field,” Skordas said. “Strategies for the industrialization of silicon photonics are currently being discussed in the context of Horizon 2020, the EU's new framework program for research and innovation for 2014-2020."

Launched by the European Commission in 2008, HELIOS focused on developing essential building blocks like efficient optical sources (silicon-based and heterogeneous integration of III-V on silicon), integrated lasers, high-speed modulators and photo-detectors. The project, which had 20 members, also combined and packaged these building blocks to demonstrate complex functions that address a variety of industrial needs.

These include a 10Gb/s modulator integrated with an electronic BiCMOS driver, a 16x10 Gb/s transceiver for WDM-PON applications, a photonic QAM-10Gb/s wireless transmission system and a mixed analog-and-digital transceiver module for multi-function antennas.

The building blocks also led to results exceeding the original specifications, positioning the partners at the leading edge in their fields:

· High-performance passive devices were obtained and introduced in the demonstrators (rib/strip waveguides transitions with less than 0.2dB losses, grating couplers with 1.6dB losses, inverted taper couplers with 1dB losses, AWG and micro-ring based de-multiplexers).

· The wafer-level integration of laser by III-V/Si bonding led to the demonstration of single-mode operation with 3dBm output power, 30dB SMSR, Ith

0 Comments
Default user
Related News